Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
نویسندگان
چکیده
Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this, geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of the appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.
منابع مشابه
Likelihood based inference for observed and partially observed diffusions
This paper provides methods for carrying out likelihood based inference on non-linear observed and partially observed non-linear diffusions. The diffusions can potentially be non-stationary. The methods are based on innovative Markov chain Monte Carlo methods combined with an augmentation strategy. We study the performance of the methods as the degree of augmentation goes to infinity and find t...
متن کاملGeodesic Monte Carlo on Embedded Manifolds
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering me...
متن کاملMarkov Chain Monte Carlo Analysis of Option Pricing Models
We use the Markov Chain Monte Carlo (MCMC) method to investigate a large class of continuous-time option pricing models. These include: constant-volatility, stochastic volatility, price jump-diffusions and volatility jump-diffusions. Estimation of these models is difficult or impossible by usual statistical methods. Consequently, there is little consensus which model is best. We propose a new B...
متن کاملFractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Along with the recent advances in scalable Markov Chain Monte Carlo methods, sampling techniques that are based on Langevin diffusions have started receiving increasing attention. These so called Langevin Monte Carlo (LMC) methods are based on diffusions driven by a Brownian motion, which gives rise to Gaussian proposal distributions in the resulting algorithms. Even though these approaches hav...
متن کاملQuantitative bounds for convergence rates of continuous time Markov processes
We develop quantitative bounds on rates of convergence for continuoustime Markov processes on general state spaces. Our methods involve coupling and shiftcoupling, and make use of minorization and drift conditions. In particular, we use auxiliary coupling to establish the existence of small (or pseudo-small) sets. We apply our method to some diffusion examples. We are motivated by interest in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014